Connect with us

GreenTech

Environmental concerns motivate millions to opt for plant-based meat

Emily Dao

Published

on

Impossible Foods Burger

Burgers have long been a staple for Americans. However, as the beef industry tops emissions charts, several fast-food chains have presented consumers with plant-based alternatives. And surprisingly, consumers are loving it.

Plant-Based Meat Surges in Popularity

From January 2019 to May 2019, American consumers purchased 228 million plant-based burgers, per market research firm, The NPD Group. The figure shows a 10% surge in sales for the plant-based food industry from the following year. Considering the actual meat industry only rose 2% during the same time frame, that’s quite an impressive leap.

Research by the team also revealed this increase in sales wasn’t due to vegetarians flocking to these popular restaurants. Rather, 95% of consumers who purchased a plant-based burger also bought a product with beef in it that same year.  

The plant-based food industry has surged since 2015. Source: SPINS LLC
The plant-based food industry has surged since 2015. Source: SPINS LLC

NPD says the increased popularity of meatless burgers is associated with the increase in plant-based alternatives. More specifically, Darren Seifer, an analyst at the firm, explains that plant-based burgers give consumers a chance to get involved. By consume plant-based burgers instead of their beef counterparts, consumers are choosing a significantly less environmentally-harmful option.

“Plant-based burgers allow consumers to substitute without sacrifice. They get the ‘burger’ experience while assuaging their need for more protein and social concerns,” Seifer said. “With that said, U.S. consumers have not given up on beef burgers, but are willing to mix things up every now and then.” 

Startups Compete in the Billion-Dollar Plant-Based Meat Industry

Currently, the vegan food industry is worth a whopping $4.5 billion. On the other hand, the plant-based meat industry rakes in approximately $800 million.

Impossible Burger and Beyond Meat currently act as the main suppliers of plant-based meat in the restaurant industry. With the help of food engineers and scientists, Impossible Burger offers consumers a soy protein and coconut oil patty, whereas Beyond Meat sells a pea-based protein patty. 

The emerging popularity and demand for meatless burgers even came as a shock to the manufacturers themselves. After a 50% surge in sales growth following the launch of its 2.0 burger, Impossible Burger even struggled with a burger shortage. To meet unprecedented demand, the company had to triple its weekly production.

Restaurants Adopting Plant-Based Meat Rapidly

Currently, Impossible Burger patties are available at over 9,000 restaurants, including White Castle, Red Robin, and Burger King. Its primary competitor, Beyond Meat, serves several other popular chains, including Del Taco, Carl Jr.’s, and Tim Horton’s. In total, the two companies serve their plant-based patties in over 20,000 locations across the United States. 

Impossible Burger patties are available at over 9,000 restaurants, such as White Castle, Red Robin, and Burger King.
Impossible Burger patties are available at over 9,000 restaurants, such as White Castle, Red Robin, and Burger King.

“I can’t believe how many people are going crazy over it,” Tricia Scanlon, a bartender at Red Robin, told The New York Times. “A lot of people have been asking for it, people that are vegetarians or vegans. Everybody who lives that lifestyle absolutely loves it.”

Consumers Actually Want Plant-Based Options

Rob Leclerc, a co-founder of food-tech startup AgFunder, said restaurants are listening to consumer feedback more than ever before. Evidently, the numbers show that adopting more plant-based options is exactly what consumers want.

For instance, after the introduction of Burger King’s Impossible Burger, it has been greener in more than just one way. In a test market for their new plant-based menu items, the burger joint reported foot traffic rose by 18.5%

“I think we’re talking about a consumer who has certain demands and — if unmet by McDonald’s —are willing to go to a smaller franchise that focuses on those demands specifically,” Leclerc said. 

Conclusions

While adding plant-based burgers to the menu is a win for the environment, it’s won’t solve the world’s climate crisis. What’s clear is that everyone needs to make sacrifices in order to mitigate the serious ramifications of climate change. And the burden can’t just lay on everyday people — major corporations also need to get involved.

So, although plant-based meat won’t completely eliminate meat production and consumption, the space is growing quickly. As more fast-food restaurants join the fight, reducing carbon emissions on a large scale is becoming less far-fetched than it once seemed.

Business

InterContinental Hotel Group Inks Deal With Energy Management Software Company

Rich Bowden

Published

on

Energy management software company Tempus Energy has just signed a deal with the InterContinental Hotel Group (IHG). The scope of the deal includes Tempus supplying green energy sensor technology to several of the group’s hotels in Australia. To start, IHG’s flagship InterContinental Hotel in Sydney’s Double Bay will be the first to deploy the software. Specifically, the software senses how much power to use, depending on the real-time availability of green energy in the grid. This allows IHG to alter the time it uses energy to take advantage of when renewable energy is available. 

Energy Management Software Automates Adjusting Energy Consumption In Real-Time

The key benefit of energy management software is that it allows clients to adjust energy consumption in real-time. Further, it does so in an automated fashion.

“We have machine learning models that predict the output of each renewable generator in the NEM, every 5 minutes,” Sara Bell, Tempus Energy’s CEO told theRising.

“Using these predictions, Tempus optimizes energy use to increase their usage of renewables, naturally decreasing usage when renewables are not available. This leads to a direct reduction in the carbon emissions of electricity used by our clients, without changing overall consumption,” she added.

Energy management software allow hotels to reduce their carbon footprint, reducing the need for companies to buy renewable energy contracts.

The Scale In Which Energy Management Software Can Reduce Carbon Emissions

Tempus’s technology will help clients like IHG take reducing their carbon footprint into their own hands. By doing so, there is no need for additional government involvement.

Responding to increasing customer calls for more sustainability, the sensors allow the group to reduce emissions by accessing green energy. Moreover, it helps to reduce the reliance on energy from fossil fuels

“By optimizing for the use of renewables on an air-conditioning chiller energy unit in Australia, we are able to achieve up to 15% reduction of carbon emissions,” Bell told me.

Summary: And A Look At Sustainability Trends In Australia

With the increased focus on climate change in Australia — including the rapidly growing school strikes —  forward-looking companies are responding to the climate crisis.

One of these new technologies is the Tempus Energy sensor. It gives hotel groups and other companies flexibility and act as a base for further sustainable measures.

Australian, NZ, and South Pacific readers of theRising who work in environmental sustainability may reach out at richbowden3@gmail.com.

Continue Reading

Business

E-Waste Is Becoming A Sustainability Disaster. And Investors Have Taken Notice.

Avery Maloto

Published

on

E Waste

As technology continues to evolve (and end up in landfill), e-waste is proving to be a sustainability disaster. In 2018 alone, humans generated approximately 2.01 billion tons of waste worldwide. To put things into perspective, 2.01 billion tons is comparable to 287,142,857 elephants or 275,342 Eiffel Towers. Certainly, that volume of waste sent into landfills is a significant concern. And along with it, potentially reusable resources are continuously wasted as a result of careless disposal. 

Shockingly, e-waste is responsible for 50 million tons of the total generated waste produced each year. Not to mention, it accounts for 70% of the toxic waste lying in landfills. 

To uncover more about the e-waste issue, I recently interviewed Amanda O’Toole, a fund manager at AXA Investment Managers (AXA IM). She is a part of the firm’s investment team as the Lead Portfolio Manager for Framlington Equities’s (AXA IM’s qualitative equities business) Clean Economy Strategy.

We discussed the primary challenges in e-waste as well as why financiers are looking towards waste management as an investment opportunity.

Why Is E-Waste So Hard To Recycle?

When dealing with the improper disposal of hazardous materials, there is a constant risk of land and water pollution through contamination. E-waste similarly causes these pollutive consequences.

For example, batteries leak heavy metals such as lead, barium, and lithium into the soil when placed in a landfill.

As a result, these heavy metals seep into groundwater channels, which eventually enter larger bodies of water like ponds or streams. And as technology continues to develop, the demand for new electronics continues to rise. Estimates show that the number of connected devices will reach 31 billion by 2020.

In O’Toole’s words, “without fundamental change throughout the electronic supply chain, the e-waste epidemic will get worse.”

Amanda OToole
Amanda O’Toole tells us “without fundamental change throughout the electronic supply chain, the e-waste epidemic will get worse.”

Although many companies do already run their own programs for the recycling of e-waste, the reclamation of e-waste is a difficult and complex process.

While complex electronics can contain up to 60 elements from the periodic table, the process of recovering these devices can be complicated and costly.

The question now arises: If it is complicated and costly, what other ways can we deal with e-waste?

Future Economic Potential In E-Waste

The way that O’Toole sees it, e-waste is of particular interest from an investment perspective because of the value of the materials it contains.

When a company is able to extract these raw materials safely, they are able to create a valuable product that can generate revenue.

If the extraction process is cost-effective, it is possible to generate a financial return by reducing e-waste. And in some cases, securing a stable supply of a material may be challenging.

Striving For Clean Technology Through Investments

For the last six months, O’Toole has been working to launch a successful new strategy focused on promoting clean technologies.

In her Clean Economy Investment strategy, she talks about how the fund adopts a unique approach that invests in diverse areas of the market that enjoy structural growth.

Surprisingly, many of these areas are not dependent on macroeconomics. Instead, the product gears towards the interest of mainstream investors.

Through this strategy, O’Toole engages with clients who are not typically interested in environmental value. And with her guidance, clients begin to move towards these areas of the market.

Appealing To the Public

Recently, the rise in social awareness of environmental issues is driving change. This change is partly due to regulations such as building performance regulation and effluence discharge monitoring.

However, consumer demand for things such as meat alternatives and recyclable packaging comprises a majority of the market’s change. In return, brands accommodate this change by developing responsible sourcing policies.

To its advantage, the fund is utilizing this societal trend and implementing it in their own main areas of focus. 

Currently, the fund identified four sub-themes to best represent opportunities for long term secular growth in the Clean Economy:

  1. Sustainable Transport
  2. Smart Energy
  3. Responsible Nutrition
  4. Recycling and Waste Reduction

Framlington Equity’s intention is to invest in publicly listed equities in areas of the global economy which benefit from secular tailwinds. And In the long term, O’Toole argues that consumers will continue to demand the transportation of goods and services; the provision of energy, food, and water; and the use of materials. 

The Bigger Picture

The common theme across the investments that AXA IM makes through the Clean Economy strategy is that these are companies whose goods and services make economic sense for their customers.

Adoption is not dependent on subsidies or a desire by corporates to address environmental issues.

The business case for adoption is based on the need to meet more stringent regulatory requirements. Additionally, companies can gain market share by addressing the growing demand for sustainable consumer products.

Brands would want to invest in order to mitigate potential reputation damage associated with a poor environmental footprint and build a sustainable production cost advantage.

Summary

Companies operating within the clean economy have a critical responsibility to ensure they offer the best solutions for clients while being mindful of the environment.

What’s more, is that when companies demonstrate how their goods and services outperform on relevant environmental metrics, they can gain a competitive advantage.

Financiers have noticed and made waste management a part of their investment strategy.

Final Notes: Is your company doing something to reduce its e-waste or carbon footprint? If so, we’d love to hear from you at tips@mediusventures.com.

Continue Reading

GreenTech

Hypoxia Is Killing Marine Life. Oregon Scientists May Have Found A Solution.

Maddie Blaauw

Published

on

Lake hypoxia is killing marine life.

California has wildfire season. The southeastern states have a rainy season. Now, Oregon has a hypoxia season … and it’s killing fish in their lakes.

What is hypoxia in lakes, and what causes it?

Lake hypoxia occurs when the dissolved oxygen content in the water is too low to sustain marine life. The microorganism phytoplankton is at the base of the mechanism creating regions of hypoxic water. The number of nutrients in the water and water temperature are the main factors affecting the growth of these microorganisms.

They will continue to grow until either of these factors limits them. Increasing water temperature or the number of nutrients in the water can trigger massive phytoplankton blooms.

Though the growing phytoplankton population causes other problems in the marine microenvironment, it isn’t the root cause of lake hypoxia. The trouble begins when once these massive populations of the microorganisms die off. They sink to the bottom of the body of water, where bacteria decompose them.

This step of the food chain underlays the depletion of oxygen. Bacteria use up much of the oxygen in this deepest part of the water when digesting the dead phytoplankton. The more phytoplankton there are to decompose, the more oxygen the bacteria will use. Increased use of oxygen by the bacteria does not significantly change the natural rate at which dissolved oxygen is added to the body of water. Thus, oxygen concentration at this depth decreases, and other organisms in this habitat can die. 

Regions where hypoxia is prevalent

Hypoxia is not a new environmental condition. Runoff from farms contain fertilizers and high concentrations of nutrients. Wastewater from cities piped into rivers can combine with this. And when drained into lakes or oceans, it accumulates to create a great environment for microorganism growth. The Gulf of Mexico has low oxygen levels, especially where the Mississippi River drains into it, due to these factors.

In Oregon, however, the main cause of hypoxic water conditions is an increase in the water temperature. This is due to increased overall temperatures, ultimately attributable to climate change. Summers are especially bad times for phytoplankton growth, and because of this, summers have become Oregon’s “hypoxia season”. 

With decreased water oxygen content, many of the native fish species in Oregon are struggling. This is an even larger problem for marine life that is place-bound. In other words, in such scenarios, marine life cannot move to another place fast enough to get more oxygen. 

A temporary solution to help marine life?

Professor Mason Terry’s research group at the Oregon Institute of Technology is working to help increase oxygen concentration in Oregon rivers where endangered species live. Earlier this month, the group finished designs for and deployed a solar-powered aeration system in the state’s Upper Klamath Lake. 

The system is on a raft and obtains power from four 310-watt solar panels. The system is also equipped with a battery that can run the device for up to 32 hours. Hence, it can add oxygen to the lake even when the sun isn’t shining. 

Terry’s aeration system is essentially a much larger version of the smaller air pumps used in fish tanks. Two compressors take power from the solar panels and push air from the environment down into the lake. A hose helps ensure that the air is deposited at the bottom of the lake, where it is needed the most. 

While this will only help small portions of the lake, the raft has been placed at a spot the endangered species can gather at. 

While it is not possible to know the effectiveness of this system until the next fish counts, it is a step forward in helping sustain the diversity of animal life. 

Scalability of this solution

As climate change continues, rising air temperatures will lead to increased water surface temperatures and correspondingly lower levels of dissolved oxygen. It is possible that hypoxia in bodies of water could become an increasingly big problem in the future.

If this project from the Oregon Institute of Technology is successful, it will be a victory because it will show that humans can aid in helping marine life suffering from not having enough oxygen in the water.

However, we will also need to consider how to make this a more scalable device. This solution is still low-impact, but with increased research, there is a possibility of maintaining marine diversity.

Continue Reading

Trending

Share via
Copy link
Powered by Social Snap